Scaling Deterministic Genetic Evolution Across Diverse Hardware
Oscilon is engineered from the ground up for heterogeneous environments—enabling the same deterministic Evolutionary Adaptive Intelligence (EAI) codebase to run efficiently across a wide range of platforms, from high-performance GPUs to mobile processors and embedded accelerators. By leveraging native backends for AMD ROCm/HIP, Microsoft DirectML, Apple Metal, and FPGA offload (AMD Zynq™ UltraScale+™ MPSoCs), Oscilon parallelizes mutation evaluation and fitness scoring without sacrificing its core guarantees of determinism and sparsity.
cpp
oscilon::DistributedContext ctx("rocm"); // AMD GPU (Linux)
// or ctx("directml"); // AMD GPU (Windows)
// or ctx("metal"); // Apple GPU (macOS/iOS)
// or ctx("fpga"); // Zynq™ MPSoC FPGA offload
ctx.spawn_workers({0, 1, 2}); // Use devices 0,1,2
ctx.parallel_evolve(net, generations = 200);
// Distributed mutation cycles| Platform | Backend | Typical Use Case | Scaling Behavior | Power / Thermal Profile |
| NVIDIA RTX / A-series | CUDA | High-throughput mutation evaluation | Near-linear on 4–8 GPUs | High (discrete GPUs) |
| NVIDIA Jetson | CUDA | Embedded / mobile edge refinement | Efficient single / multi-core GPU | Low–Medium (power-optimized) |
| AMD Radeon / Instinct | ROCm / HIP | High-throughput mutation evaluation | Near-linear on 4–8 GPUs | High (discrete GPUs) |
| AMD integrated (Windows) | DirectML | Workstation / laptop refinement | Good multi-core + iGPU scaling | Medium |
| Apple M-series | Metal | Mobile / tablet on-device evolution | Efficient single-GPU parallelism | Low (battery-friendly) |
| AMD Zynq UltraScale+ | FPGA offload | Ultra-low-power tactical edge | Custom kernel acceleration | Very low |